Protecting Sensitive Knowledge By Data Sanitization
نویسندگان
چکیده
In this paper, we address the problem of protecting some sensitive knowledge in transactional databases. The challenge is on protecting actionable knowledge for strategic decisions, but at the same time not losing the great benefit of association rule mining. To accomplish that, we introduce a new, efficient one-scan algorithm that meets privacy protection and accuracy in association rule mining, without putting at risk the effectiveness of the data mining per se.
منابع مشابه
Secure Association Rule Sharing
The sharing of association rules is often beneficial in industry, but requires privacy safeguards. One may decide to disclose only part of the knowledge and conceal strategic patterns which we call restrictive rules. These restrictive rules must be protected before sharing since they are paramount for strategic decisions and need to remain private. To address this challenging problem, we propos...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملA Novel Sanitization Approach for Privacy Preserving Utility Itemset Mining
Data mining plays a vital role in today’s information world wherein it has been widely applied in various business organizations. The current trend in business collaboration demands the need to share data or mined results to gain mutual benefit. However it has also raised a potential threat of revealing sensitive information when releasing data. Data sanitization is the process to conceal the s...
متن کاملCollective Data-Sanitization for Preventing Sensitive Information Inference Attacks in Social Networks
Releasing social network data could seriously breach user privacy. User profile and friendship relations are inherently private. Unfortunately, it is possible to predict sensitive information carried in released data latently by utilizing data mining techniques. Therefore, sanitizing network data prior to release is necessary. In this paper, we explore how to launch an inference attack exploiti...
متن کاملTwo New Techniques for Hiding Sensitive Itemsets and Their Empirical Evaluation
Many privacy preserving data mining algorithms attempt to selectively hide what database owners consider as sensitive. Specifically, in the association-rules domain, many of these algorithms are based on item-restriction methods; that is, removing items from some transactions in order to hide sensitive frequent itemsets. The infancy of this area has not produced clear methods neither evaluated ...
متن کامل